Asymptotic Properties of Maximum (composite) Likelihood Estimators for Partially Ordered Markov Models
نویسندگان
چکیده
Partially ordered Markov models (POMMs) are Markov random fields (MRFs) with neighborhood structures derivable from an associated partially ordered set. The most attractive feature of POMMs is that their joint distributions can be written in closed and product form. Therefore, simulation and maximum likelihood estimation for the models is quite straightforward, which is not the case in general for MRF models. In practice, one often has to modify the likelihood to account for edge components; the resulting composite likelihood for POMMs is similarly straightforward to maximize. In this article, we use a martingale approach to derive the asymptotic properties of maximum (composite) likelihood estimators for POMMs. One of our results establishes that under regularity conditions that are fairly easy to check, and Dobrushin’s condition for spatial mixing, the maximum composite likelihood estimator is consistent, asymptotically normal, and also asymptotically efficient.
منابع مشابه
Asymptotic Properties of Maximum (Composite) Likelihood Estimators for Partially Ordered Markov Models (Running Title: Asymptotic properties of MLEs for POMMs)
Partially ordered Markov models (POMMs) are Markov random elds (MRFs) with neighborhood structures derivable from an associated partially ordered set. The most attractive feature of POMMs is that their joint distributions can be written in closed and product form. Therefore, simulation and maximum likelihood estimation for the models is quite straightforward, which is not the case in general fo...
متن کاملAsymptotic Properties of Maximum Likelihood Estimators for Partially Ordered Markov Models
Partially ordered Markov models (POMMs) are Markov random elds (MRFs) with neighborhood structures derivable from an associated partially ordered set. The most attractive feature of POMMs is that their joint distributions can be written in closed and product form. Therefore, simulation and maximum likelihood estimation for the models is quite straightforward, which is not the case in general fo...
متن کاملEstimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کاملParameter Estimation for Hidden Markov Models with Intractable Likelihoods
Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the as...
متن کاملOptimality of estimators for misspecified semi-Markov models
Suppose we observe a geometrically ergodic semi-Markov process and have a parametric model for the transition distribution of the embedded Markov chain, for the conditional distribution of the inter-arrival times, or for both. The first two models for the process are semiparametric, and the parameters can be estimated by conditional maximum likelihood estimators. The third model for the process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003